Merhabalar arkadaşlar, Sitemizi programlama ile ilgilenen bütün arkadaşlarımızın türkçe içerik konusunda çektiği sıkıntılar düşünülerek soru/cevap şeklinde bir etkileşimde bulunabilmesi için kurduk. Umuyoruz hepimiz için güzel bir deneyim olur. Hasscript Ekibi

1
Veri analizinde en çok karşılaşılan problemler nelerdir?

Açık 1 Cevaplar 56 Gösterim Veri Bilimi
Veri analizinde bahsi geçen 3 farklı problem var

- Dummification (one hot encoding)
- Overfitting
- Imputing

Bu problemleri biraz anlatabilecek kimse var mı?

1 cevap

0
One Hot Encoding; Bildiğim kadarıyla kategorisel değişkenlerin ikili (binary) olarak temsil edilmesi anlamına gelmektedir. Örneğin Kediler=0, Köpekler=1 gibi.

(Underfitting) Yetersiz Uyum; Modelimizde veri setimizdeki önemli özellikleri yakalayamayıp gerekli öğrenmeyi yapamamamız demektir. Daha fazla veri kullanılarak ya da daha karmaşık bir model kullanılarak çözülebilir bir durumdur.

(Overfitting) Aşırı Uyum; Modelimiz, veri setinin üzerinde gereğinden fazla çalışıp ezber yapmaya başlamışsa aşırı uyumluluktan dolayı düşük skor alabiliriz. Çünkü model veri setindeki (datasetteki) verilerin bire bir kopyalarını arar.

Imputing; Eksik verilerin yerine uygun veriler üretilmesi durumudur diyebiliriz. Örneğin bir veri setimizdeki maas değeri bilinmeyen "a" elemanı olduğunu varsayalım. Yapacağımız Imputing işlemine göre "a" elemanına şirketin ortalama maaş değerini ya da belirlediğimiz maas değerini atıyabiliriz.
(206 puan)